5 research outputs found

    Code wars: steganography, signals intelligence, and terrorism

    Get PDF
    This paper describes and discusses the process of secret communication known as steganography. The argument advanced here is that terrorists are unlikely to be employing digital steganography to facilitate secret intra-group communication as has been claimed. This is because terrorist use of digital steganography is both technically and operationally implausible. The position adopted in this paper is that terrorists are likely to employ low-tech steganography such as semagrams and null ciphers instead

    PPARβ/δ governs Wnt signaling and bone turnover.

    No full text
    Peroxisome proliferator-activated receptors (PPARs) act as metabolic sensors and central regulators of fat and glucose homeostasis. Furthermore, PPARγ has been implicated as major catabolic regulator of bone mass in mice and humans. However, a potential involvement of other PPAR subtypes in the regulation of bone homeostasis has remained elusive. Here we report a previously unrecognized role of PPARβ/δ as a key regulator of bone turnover and the crosstalk between osteoblasts and osteoclasts. In contrast to activation of PPARγ, activation of PPARβ/δ amplified Wnt-dependent and β-catenin-dependent signaling and gene expression in osteoblasts, resulting in increased expression of osteoprotegerin (OPG) and attenuation of osteoblast-mediated osteoclastogenesis. Accordingly, PPARβ/δ-deficient mice had lower Wnt signaling activity, lower serum concentrations of OPG, higher numbers of osteoclasts and osteopenia. Pharmacological activation of PPARβ/δ in a mouse model of postmenopausal osteoporosis led to normalization of the altered ratio of tumor necrosis factor superfamily, member 11 (RANKL, also called TNFSF11) to OPG, a rebalancing of bone turnover and the restoration of normal bone density. Our findings identify PPARβ/δ as a promising target for an alternative approach in the treatment of osteoporosis and related diseases
    corecore